Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans.

نویسندگان

  • Satoshi Suo
  • Yoshishige Kimura
  • Hubert H M Van Tol
چکیده

The nervous system plays a critical role in adaptation to a new environment. In Caenorhabditis elegans, reduced access to food requires both changes in behavior as well as metabolic adaptation for survival, which is postulated to involve the bioamine octopamine. The transcription factor cAMP response element-binding protein (CREB) is generally activated by G-protein-coupled receptors (GPCRs) that activate G alpha(s) and is known to play an important role in long-term changes, including synaptic plasticity. We show that, in C. elegans, the CREB ortholog CRH-1 (CREB homolog family member 1) activates in vivo a cAMP response element-green fluorescent protein fusion reporter in a subset of neurons during starvation. This starvation response is mediated by octopamine via the GPCR SER-3 (serotonin/octopamine receptor family member 3) and is fully dependent on the subsequent activation of the G alpha(q) ortholog EGL-30 (egg-laying defective family member 30). The signaling cascade is only partially dependent on the phospholipase C beta (EGL-8) and is negatively regulated by G alpha(o) [GOA-1 (G-protein, O, alpha subunit family member 1)] and calcium/calmodulin-dependent kinase [UNC-43 (uncoordinated family member 43)]. Nonstarved animals in a liquid environment mediate a similar response that is octopamine independent. The results show that the endogenous octopamine system in C. elegans is activated by starvation and that different environmental stimuli can activate CREB through G alpha(q).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopamine Modulates Acetylcholine Release via Octopamine and CREB Signaling in Caenorhabditis elegans

Animals change their behavior and metabolism in response to external stimuli. cAMP response element binding protein (CREB) is a signal-activated transcription factor that enables the coupling of extracellular signals and gene expression to induce adaptive changes. Biogenic amine neurotransmitters regulate CREB and such regulation is important for long-term changes in various nervous system func...

متن کامل

Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation

Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate co...

متن کامل

Ras inhibits thyroglobulin expression but not cyclic adenosine monophosphate-mediated signaling in Wistar rat thyrocytes.

We previously reported that microinjection of purified Ras protein stimulated DNA synthesis in quiescent Wistar rat thyrocytes and that TSH (TSH)-stimulated DNA synthesis was Ras-dependent. In contrast to these results, microinjection of cellular or oncogenic Ras significantly reduced TSH-stimulated thyroglobulin (Tg) expression, a marker of thyrocyte differentiation. Microinjection of a domina...

متن کامل

Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans.

Animals assess food availability in their environment by sensory perception and respond to the absence of food by changing hormone and neurotransmitter signals. However, it is largely unknown how the absence of food is perceived at the level of functional neurocircuitry. In Caenorhabditis elegans, octopamine is released from the RIC neurons in the absence of food and activates the cyclic AMP re...

متن کامل

Caenorhabditis elegans Protein Arginine Methyltransferase PRMT-5 Negatively Regulates DNA Damage-Induced Apoptosis

Arginine methylation of histone and non-histone proteins is involved in transcription regulation and many other cellular processes. Nevertheless, whether such protein modification plays a regulatory role during apoptosis remains largely unknown. Here we report that the Caenorhabditis elegans homolog of mammalian type II arginine methyltransferase PRMT5 negatively regulates DNA damage-induced ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 40  شماره 

صفحات  -

تاریخ انتشار 2006